Chapter 12: Control theory: modeling

chapter12_2_1 Modeling in the Frequency Domain for cases 1, 2, and 3

\% Onwubolu, G. C.

\% Mechatronics: Principles \& Applications
\% Elsevier
\%
\% Mechatronics: Principles \& Applications Toolbox Version 1.0
\% Copyright © 2005 by Elsevier
\%
\% Chapter 12.2: Modeling in the Frequency Domain
\%
\% Cases 1, 2, 3 MATLAB's calculating power is greatly enhanced using the Symbolic
\% Math Toolbox. In this example we demonstrate its power by calculating inverse
\% Laplace transforms of $\mathrm{F}(\mathrm{s})$. The beginning of any symbolic calculation requires
\% defining the symbolic objects. For example, the Laplace transform variable, s ,
\% or the time variable, t , must be defined as a symbolic object. This definition $\%$ is performed using the syms command. Thus, syms s defines s as a symbolic object;
$\%$ syms t defines t as a symbolic object; and syms $s t$ defines both s and t as \% symbolic objects. We need only define objects that we input to the program.
\% Variables produced by the program need not be defined. Thus, if we are finding
\% inverse Laplace transforms, we need only define s as a symbolic object, since t
\% results from the calculation. Once the object is defined, we can then type F as
\% a function of s as we normally would write it. We do not have to use vectors to
\% represent the numerator and denominator. The Laplace transforms or time functions
\% can also be printed in the MATLAB Command Window as we normally would write it.
\% This form is called pretty printing. The command is pretty (F), where F is the \% function we want to pretty print. In the code below, you can see the difference
\% between normal printing and pretty printing if you run the code without the $\%$ semicolons at the steps where the functions, F or f, are defined. Once F(s) is
\% defined as F, we can find the inverse Laplace transform using the command
\% ilaplace(F). In the example below, we find the inverse Laplace transforms of
\% the frequency functions in the examples used for Cases 2 and 3 in Section 2.2
$\%$ in the text.
'Example ML1'
syms s
\% Display label.
\% Construct symbolic object for \% Laplace variable 's'.
'Inverse Laplace transform' \% Display label.
$\mathrm{F}=3 /\left[(\mathrm{s}+2)^{\star}(\mathrm{s}+3)\right]$; \quad \% Define $\mathrm{F}(\mathrm{s})$ from Case 2 example.
' $F(\mathrm{~s}$) from Case 1' \% Display label.
pretty(F)
$\mathrm{f}=\mathrm{ilaplace}(\mathrm{F})$;
'f(t) for Case 1'
pretty(f)
$\mathrm{F}=3 /\left[(\mathrm{s}+2)^{\star}(\mathrm{s}+3)^{\wedge} 2\right] ; \quad$ \% Define $\mathrm{F}(\mathrm{s})$ from Case 3 example.
'F(s) for Case 2' \% Display label.
pretty (F)
$\mathrm{f}=\mathrm{ilaplace}(\mathrm{F})$
'f(t) for Case 2'
pretty(f)
$\mathrm{F}=2 /\left[\mathrm{s}^{*}\left(\mathrm{~s}^{\wedge} 2+3^{*} \mathrm{~s}+4\right)\right]$; Define $\mathrm{F}(\mathrm{s})$ from Case 3 example.
'F(s) for Case 3' \% Display label.
pretty(F)
$\mathrm{f}=\mathrm{ilaplace}(\mathrm{F})$;
'f(t) for Case 3'
pretty(f)
pause
\% Pretty print F(s).
\% Find inverse Laplace transform.
\% Display label.
\% Pretty print $f(t)$ for Case 2.
\% Pretty print F(s) for Case 3.
\% Find inverse Laplace transform.
\% Display label.
\% Pretty print $f(t)$ for Case 3.
\% Pretty print F(s) for Case 3.
\% Find inverse Laplace transform.
\% Display label.
\% Pretty print $f(t)$ for Case 3.

